/**
* OscilloscopeGeneratorTrigger.cpp - for LibTiePie 0.5+
*
* This example sets up the generator to generate a 1 kHz triangle waveform, 4 Vpp.
* It also sets up the oscilloscope to perform a block mode measurement, triggered on "Generator new period".
* A measurement is performed and the data is written to OscilloscopeGeneratorTrigger.csv.
*
* Find more information on http://www.tiepie.com/LibTiePie .
*/
#include <iostream>
#include <fstream>
#include "libtiepie++.h"
#include "PrintInfo.h"
#if defined(__linux) || defined(__unix)
#include <cstdlib>
#include <unistd.h>
#endif
using namespace std;
using namespace LibTiePie;
int main()
{
int status = EXIT_SUCCESS;
// Initialize library:
Library::init();
// Print library information:
printLibraryInfo();
// Update device list:
DeviceList::update();
// Try to open an oscilloscope with block measurement support and a generator in the same device:
Oscilloscope* scp = 0;
Generator* gen = 0;
for(uint32_t index = 0; index < DeviceList::count(); index++)
{
DeviceListItem* item = DeviceList::getItemByIndex(index);
if(item->canOpen(DEVICETYPE_OSCILLOSCOPE) && item->canOpen(DEVICETYPE_GENERATOR))
{
scp = item->openOscilloscope();
// Check for valid pointer and block measurement support:
if(scp && scp->measureModes() & MM_BLOCK)
{
gen = item->openGenerator();
}
else
{
delete scp;
scp = 0;
}
}
delete item;
if(scp && gen)
{
break;
}
}
if(scp && gen)
{
float** channelData = 0;
uint16_t channelCount = 0;
try
{
// Oscilloscope settings:
// Get the number of channels:
channelCount = scp->channels.count();
// Set measure mode:
scp->setMeasureMode(MM_BLOCK);
// Set sample frequency:
scp->setSampleFrequency(1e6); // 1 MHz
// Set record length:
const uint64_t recordlength = scp->setRecordLength(10000); // 10 kS
// Set pre sample ratio:
scp->setPreSampleRatio(0); // 0 %
// For all channels:
for(uint16_t ch = 0; ch < channelCount; ch++)
{
OscilloscopeChannel& channel = scp->channels[ch];
// Enable channel to measure it:
channel.setEnabled(true);
// Set range:
channel.setRange(8); // 8 V
// Set coupling:
channel.setCoupling(CK_DCV); // DC Volt
}
// Set trigger timeout:
scp->setTriggerTimeOut(1); // 1 s
// Disable all channel trigger sources:
for(uint16_t ch = 0; ch < channelCount; ch++)
scp->channels[ch].trigger->setEnabled(false);
// Locate trigger input:
TriggerInput* triggerInput = scp->triggerInputs.getById(TIID_GENERATOR_NEW_PERIOD); // or TIID_GENERATOR_START || TIID_GENERATOR_STOP
if(!triggerInput)
throw runtime_error("Unknown trigger input!");
// Enable trigger input:
triggerInput->setEnabled(true);
// Generator settings:
// Set signal type:
gen->setSignalType(ST_TRIANGLE);
// Set frequency:
gen->setFrequency(1e3); // 1 kHz
// Set amplitude:
gen->setAmplitude(2); // 2 V
// Set offset:
gen->setOffset(0); // 0 V
// Enable output:
gen->setOutputOn(true);
// Print oscilloscope info:
printDeviceInfo(scp);
// Print generator info:
printDeviceInfo(gen);
// Start measurement:
scp->start();
// Start signal generation:
gen->start();
// Wait for measurement to complete:
while(!scp->isDataReady())
{
// 10 ms delay, to save CPU time:
#if defined(_WIN32) || defined(_WIN64)
Sleep(10);
#elif defined(__linux) || defined(__unix)
usleep(10000);
#endif
}
// Stop generator:
gen->stop();
// Disable output:
gen->setOutputOn(false);
// Create data buffer:
channelData = new float*[channelCount];
for(uint16_t ch = 0; ch < channelCount; ch++)
channelData[ch] = new float[recordlength] ;
// Get the data from the scope:
uint64_t samplesRead = scp->getData(channelData, channelCount , 0 , recordlength);
// Open file with write/update permissions:
const std::string filename("OscilloscopeGeneratorTrigger.csv");
ofstream csv(filename.c_str() , std::ofstream::out);
if(csv.is_open())
{
// Write csv header:
csv << "Sample";
for(uint16_t ch = 0; ch < channelCount; ch++)
csv << ";Ch" << (ch + 1);
csv << endl;
// Write the data to csv:
for(uint64_t i = 0; i < samplesRead; i++)
{
csv << i;
for(uint16_t ch = 0; ch < channelCount; ch++)
csv << ";" << (float)channelData[ch][i];
csv << endl;
}
cout << "Data written to: " << filename << endl;
// Close file:
csv.close();
}
else
{
cerr << "Couldn't open file: " << filename;
status = EXIT_FAILURE;
}
}
catch(const exception& e)
{
cerr << "Exception: " << e.what() << endl;
status = EXIT_FAILURE;
}
// Delete data buffer:
if(channelData)
for(uint16_t ch = 0; ch < channelCount; ch++)
delete [] channelData[ch];
delete [] channelData;
// Close oscilloscope:
delete scp;
// Close generator:
delete gen;
}
else
{
cerr << "No oscilloscope available with block measurement support or generator available in the same unit!" << endl;
status = EXIT_FAILURE;
}
// Exit library:
Library::exit();
return status;
}